Сайт для школьниковВторник, 17.06.2025, 10:33

Приветствую Вас Гость | RSS
Главная | Каталог статей | Регистрация | Вход
Меню сайта

Категории раздела
Мои статьи [8]
Стихи для школьников [99]
Математика [20]
Химия [6]
Физика [0]
История [9]
География [16]
Литература [1]
Школьные сочинения [79]
Загадки для школьников [16]
Знаете ли Вы? [0]
Пословицы скороговорки [39]
Цитаты и афоризмы [0]
Сценарии праздников [6]
Праздники [1]
Школьные песни [21]
Рисунки из символов [6]
Поделки для детей [66]
Детские загадки [10]
Поздравления [3]
Частушки [19]
Детские раскраски [19]

Календарь

Главная » Статьи » Математика

Площади плоских фигур

Площади плоских фигур

 

Площади плоских фигур: квадрат, прямоугольник, ромб,

 параллелограмм, трапеция, четырёхугольник,

 прямоугольный треугольник, равнобедренный треугольник,
 равносторонний треугольник, произвольный треугольник,

многоугольник, правильный шестиугольник,
 круг, сектор, сегмент круга. Формула Герона.

 

 

Произвольный треугольник.  a, b, cстороны;  aоснование;  hвысота; 

A, B, C – углы, противоположные сторонам  a, b, c ;    p = ( a + b + c ) / 2.

Последнее выражение называется формулой Герона.

 

Многоугольник, площадь которого нужно определить, может быть разделён своими диагоналями на несколько треугольников. Многоугольник, описанный около круга ( рис.67 ), может быть разделён прямыми, идущими из центра круга к его вершинам. Тогда получаем:

В частности, эта формула справедлива для любого правильного многоугольника.   

Правильный шестиугольник.  a – сторона.

Круг.  D – диаметр;  r – радиус.

 

Сектор ( рис.68 ).  r – радиус;  n – величина центрального угла в градусах;  l длина дуги.

Сегмент ( рис.68 ). Площадь сегмента определяется как разность между площадями сектора AmBO и треугольника AOB. Кроме того, есть приближённая формула для площади сегмента:

где  a = AB ( рис.68 ) – основание сегмента;  h – его высота ( h = rOD ). Относительная погрешность этой формулы:  при AmB = 60° – около 1.5% ;  при  AmB = 30° -  ~ 0.3%.

 

П р и м е р .  Вычислить площади сектора AmBO ( рис.68 ) и сегмента AmB

                      при следующих данных: r = 10 см, n = 60°.

 

Р е ш е н и е .  Площадь сектора:

                       Площадь правильного треугольника AOB:

                       Отсюда, площадь сегмента:

                                                                                                                                         

S = S1   S2  =  52.36 – 43.30 = 9.06 см 2 .

 

                        Заметим, что в правильном треугольнике AOB:

                        AB = AO = BO = rAD = BD = r / 2 , и поэтому высота OD

                        в соответствии с теоремой Пифагора равна:

                         Тогда, по приближённой формуле получим:

Категория: Математика | Добавил: ZZolotko (24.09.2009)
Просмотров: 1370 | Комментарии: 12 | Рейтинг: 0.0/0
Всего комментариев: 2
0  
2 vdd62   (31.05.2025 13:27) [Материал]
provigil 100mg oral buy modafinil 200mg online modafinil for sale online <a href="https://provicef.com/">modafinil 100mg sale</a> provigil 200mg us modafinil cost modafinil 100mg cheap

0  
1 Llyymw   (20.03.2025 09:49) [Материал]
order omeprazole 20mg online cheap - <a href="https://omepmetolol.com/tenormin/">buy tenormin without a prescription</a> buy tenormin paypal

Имя *:
Email *:
Код *:
SiteHeart
загрузка...
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0


    Copyright MyCorp © 2025
    Конструктор сайтовuCoz