Сайт для школьниковВоскресенье, 22.12.2024, 18:21

Приветствую Вас Гость | RSS
Главная | Каталог статей | Регистрация | Вход
Меню сайта

Категории раздела
Мои статьи [8]
Стихи для школьников [99]
Математика [20]
Химия [6]
Физика [0]
История [9]
География [16]
Литература [1]
Школьные сочинения [79]
Загадки для школьников [16]
Знаете ли Вы? [0]
Пословицы скороговорки [39]
Цитаты и афоризмы [0]
Сценарии праздников [6]
Праздники [1]
Школьные песни [21]
Рисунки из символов [6]
Поделки для детей [66]
Детские загадки [10]
Поздравления [3]
Частушки [19]
Детские раскраски [19]

Календарь

Главная » Статьи » Математика

Действия с обыкновенными дробями

Действия с обыкновенными дробями

 

Расширение дроби. Сокращение дроби. Сравнение дробей.

Приведение к общему знаменателю. Сложение и вычитание дробей.

Умножение дробей. Деление дробей.

Расширение дроби. Значение дроби не меняется, если умножить её числитель и знаменатель на одно и то же число, отличное от нуля. Это преобразование называется расширением дроби. Например,

Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля. Это преобразование называется сокращением дроби. Например,

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:


Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, чтобы привести к общему знаменателю.

П р и м е р .  Сравнить две дроби:

 

Р е ш е н и е. Расширим первую дробь на знаменатель второй, а вторую - на знаменатель первой:

Использованное здесь преобразование называется приведением дробей к общему знаменателю.

Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того, чтобы сложить дроби, надо сложить их числители, а для того, чтобы вычесть дроби, надо вычесть их числители (в том же порядке). Полученная сумма или разность будет числителем результата; знаменатель останется тем же. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел мы рекомендуем сначала преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется, к виду смешанного числа.

П р и м е р .

Умножение дробей. Умножить некоторое число на дробь означает умножить его на числитель и разделить произведение на знаменатель. Следовательно, мы имеем общее правило умножения дробей: для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.

П р и м е р .

Деление дробей. Для того, чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь. Это правило вытекает из определения деления (см. раздел “Арифметические операции”).

П р и м е р .     

Категория: Математика | Добавил: ZZolotko (24.09.2009)
Просмотров: 1061 | Комментарии: 1 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
SiteHeart
загрузка...
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0


    Copyright MyCorp © 2024
    Конструктор сайтов - uCoz